Divide and Conquer: Efficient Multi-Path
Validation with ProMPV

Anxiao He, Yubai Xie, Wensen Mao, and Tienpei Yeh

Zhejiang University, Hangzhou ZJ 310007, CHINA
{zjuhax,xiaoxiaobai,wsmao,3130001051}0zju.edu.cn

Abstract. Path validation has long be explored toward forwarding re-
liability of Internet traffic. Adding cryptographic primitives in packet
headers, path validation enables routers to enforce which path a packet
should follow and to verify whether the packet has followed the path.
How to implement path validation for multi-path routing is yet to be in-
vestigated. We find that it leads to an impractically low efficiency when
simply applying existing single-path validation to multi-path routing.
In this paper, we present ProMPV as an initiative to explore efficient
multi-path validation for multi-path routing. We segment the forwarding
path into segments of three routers following a sliding window with size
one. Based on this observation, we design ProMPV as a proactive multi-
path validation protocol in that it requires a router to proactively leave
to its second next hop with proofs that cannot be tampered by its next
hop. In multi-path routing, this greatly optimizes the computation and
packet size. A packet no longer needs to carry all proofs of routers along
all paths. Instead, it iteratively updates its carried proofs that correspond
to only three hops. We validate the security and performance of ProMPV
through security analysis and experiment results, respectively.

Keywords: Path validation - Multi-path routing - Source authentica-
tion - Routing strategy.

1 Introduction

Path validation has long been explored to secure the forwarding process of Inter-
net traffic [2]. In the current Internet, both the source and the destination have
no control over the forwarding of their communication traffic. This leaves various
forwarding anomalies unnoticeble. For example, the source and the destination
may have signed up for a premium service (e.g., high bandwidth) for their com-
munication. However, the service provider may direct their traffic along a path
with inferior performance. Such mis-forwarding can also be exploited to breach
security. Consider, for example, when the destination requires that all traffic
toward it be examined via a security middlebox. If an attack packet toward it
circumvents the security middlebox yet cannot be detected, the destination may
be attacked. To address these concerns, path validation enables routers to per-
form additional cryptographic primitives on packets. Specifically, it introduces

2 A. He et al.

both enforcement and verification over the packet forwarding process. Forward-
ing enforcement aims to regulate routers of how to forward a specific packet.
Forwarding verification aims to enable routers to check whether a packet has
been forwarded as required. Both operations are implemented through packet-
carried cryptographic proofs. The key idea is that routers add their proofs in
packet headers toward an unforgeable forwarding history of packets. Current
path validation solutions focus mainly on the single-path routing scenario and
has an O(n) overhead given an n-hop path.

As network develops rapidly, single-path routing cannot satisfy the demands
of speed and security, thus multipath technology appeals. Multipath routing
combines efficiency and robustness, allowing packets travel through multiple
paths with same source to the same destination [3]. The balance between ef-
ficiency and security is critical for the deployment of Internet protocols [10].
However, simply use single-path validation scheme in multipath situation would
cost an unacceptable overhead. First, in multipath situation, every node has a
group of downstream node to choose, and with the path length increases, the
number of nodes would grow in exponential form, making the validation cost
too big to store. According to the measurement study in [11], for 300 million AS
pairs, more than 50% of them can find at least tens of alternate paths while 25%
of them have more than 100 alternate paths. Second, single-path schemes request
the whole path’s information to build a verification chain, but it is impossible
in multipath situation since source may not know the entire path followed by
a packet. With specific routing strategy, routers can only decide its next hop
according to real-time network status [12]. Therefore, it is meaningless to pre-
build a path as packet would change directions in the middle way unless we
pre-compute all the possible ways, however, the cost is too large.

In this paper, we present ProMPV that achieves efficient multi-path valida-
tion [9, 7] in a divide-and-conquer way. To investigate useful efficiency techniques,
we start with analyzing the characteristics of existing single-path validation so-
lutions. We find that a packet may not have to carry a router’s proof to all the
router’s downstream routers for verification. The enforcement and verification
of a forwarding path can be divided and each division conquers a segment of
the forwarding path. Specifically, we segment the forwarding path into segments
of three routers following a sliding window with size one. Consider, for exam-
ple, an n-hop forwarding path (r1, r2, ..., 7). The segments ProMPV handles are
(r1,m9,13), (r2,73,74), (13,74,75), and so on. The key idea is that we can require
r1 to leave a proof to its next hop’s next hop, that is, r3. If r3 can successfully
verify the expected proof from ri, it demonstrates that the intermediary ro for-
wards packets correctly without any misbehavior. Based on this observation, we
design ProMPYV as a proactive multi-path validation protocol in that it requires
a router to proactively leave to its second next hop with proofs that cannot be
tampered by its next hop. In multi-path routing, this greatly optimizes the com-
putation and packet size. A packet no longer needs to carry all proofs of routers
along all paths. Instead, it iteratively updates its carried proofs that correspond
to only three hops.

Divide and Conquer: Efficient Multi-Path Validation with ProMPV 3

In summary, we make the following major contributions to efficient multi-
path validation.

— Identify the challenges of path validation in multi-path routing. We analyze
the infeasibility of directly applying single-path validation solutions to multi-
path validation.

— Propose a proactive multi-path validation technique that achieves efficient
multi-path validation in a divide-and-conquer fashion.

— Design ProMPYV based on the proactive divide-and-conquer technique.

Prove the security properties of ProMPV.

— Implement ProMPYV using OpenSSL and evaluate its performance. The time
and space overhead of ProMPV is insensitive to the path length. Different
key lengths can be selected under different security requirements to balance
time cost and security level.

The rest of the paper is organized as follows. Section 2 reviews existing path
validation solutions and underline their infeasibility to multi-path routing. Sec-
tion 3 proposes ProMPV toward efficient multi-path validation using a divide-
and-conquer technique. Section 4 details the ProMPV design. Section 5 proves
the security of ProMPV. Section 6 and Section 7 prototype ProMPV and eval-
uate its performance. Finally, Section 8 concludes the paper.

2 Problem

In this section, we review existing single-path validation solutions and identify
their infeasibility in multi-path routing. Nowadays, the number of Internet users
and their requirement on bandwidth and quality are increasing more rapidly than
ever. Single-path routing can no longer keep up with this pace. In comparison
with single-path routing, multi-path routing can effectively avoid the situations
like router failures and link congestion as more than one forwarding paths are
available. Besides, idle network bandwidth can be fully utilized; the end-to-end
delay can be reduced. From the security point of view, packets transmitted by
multi-path routing are more difficult to be attacked because it is more challenging
for the attacker to simultaneously control several alternate forwarding paths.
Albeit multi-path routing is more advantageous than single-path routing in terms
of fault tolerance, routing reliability, bandwidth utilization, and security, various
challenges lie in multi-path validation.

2.1 Single-Path Validation

The initiative work on singe-path validaiton is ICING [5]. ICING introduces two
types of proofs, Proof of Consent (PoC) and Proof of Provenance (PoP). PoCs
are used for each router to demonstrate that is has the permission to forward
certain packets. PoPs are used to prove that a router has processed certain
packets. Both of these proofs are added to the corresponding verification fields
in packet headers. When the packet propagates through the network, each node

4 A. He et al.

verifies whether the packet has followed its approved path. ICING performs path
validation as follows. First, it check whether the single routing path is approved.
The path can be confirmed by checking whether the PoC is consistent. Then
each node confirms the previous routers by verifying its verification domain.
Finally, the PoP is used to update its verification domain for all subsequent
verification nodes. The PoP takes the first 8 bytes of the AES-CBC-MAC hash
value. So every node can perform source authentication and path verification. In
OPT, a PoP alike field called PVF is used. The source authentication and path
verification are verified by PVF. PVF is a set of nested MAC values, and the
source generates all PVFs in advance. The value of each path node is calculated
using PVF. Source authentication and path verification only need to compare
the calculation results given by the source. OPT lets the source to take over a

large portion of computation that otherwise is performed by intermediate routers
as in ICING. OPT is therefore much faster than ICING.

2.2 Infeasiblity to Multi-Path Validation

As mentioned before, ICING and OPT are both single-path validation solutions.
They need to determine the entire path before the session begins, including the
path length and routers that the packet passes through. However, in multi-path
routing, there are many paths connecting the source and the destination. These
paths may pass through different routers and their path lengths are not fixed.
The choice is depending on the routing strategy. So if we simply use single-path
validation scheme in multi-path situation without modifying, multi-path would
be considered as a set of many single paths. In this way, the overhead of time
and space might be explosive with the number of possible forwarding paths.
Waste of packet size and bandwidth. Traditional schemes need to build the
complete path at first to help verify the packet. It is feasible in single path since
there may be at most no more than 30 hops in a path [6] and every router knows
exactly who is the next hop. But in multi-path situation, things are different.
Routers do not know their next hops at the beginning, they need to choose
them in real time according to network status such as link availability. This way,
each router may have several choices for forwarding a packet to the next hop.
If the source uses the normal way, the size complexity would be an exponential
function related to the number of hops. It is a huge pressure on packet size. Also,
it would cost much of the bandwidth used for transferring package data.

Low efficiency. Path validation needs to compute many validation fields before
the packet transfer to fast the validation process. The source can pre-compute
some of these fields to accelerate the processing speed. However, in the multi-path
situation, to verify each other, every two routers have to share a pair of symmetric
keys and this would cost many calculation resources. Moreover, the source has
to pre-compute many fields used for verification. All these computation lead to
a low validation efficiency when many possible forwarding paths enforce a large
amount of computation.

Divide and Conquer: Efficient Multi-Path Validation with ProMPV 5

3 Overview

In this section, we construct a symmetric-key encryption scheme to address
the aforementioned validation inefficiencies. It motivates out efficient multi-path
validation ProMPV to be presented in Section 4.

3.1 Motivation

To address the limitations of the former schemes, we propose a new scheme with
the following properties: symmetry and divide-and-conquer. First, we use sym-
metric encryption to minimize the key size at the same security level compared
with when asymmetric encryption is used. This decreases the cost of key storage
and increases the speed of computation. Second, since storing and validating an
entire path lead to a high overhead, our scheme divides the path into several
segments.

Symmetry. Our scheme uses symmetric-key encryption to minimize the amount
of calculation and accelerate the processing speed. Asymmetric-key encryption
can decrease the number of key pairs between every pair of routers. Although
this can save some cost, its large key size and group size would cost more space.
For example, given a 128-bit security level, symmetric-key encryption like AES
only needs 128 bits to store a key while asymmetric-key encryption like DH needs
256 bits for key size and another 3,072 bits for group size, and even ECC will
needs other 256 more bits to store. Therefore, using symmetric-key encryption
can save a lot of space and we can use it to store more validation parts. Besides,
symmetric-key encryption is faster than asymmetric-key encryption. Since path
validation is a part of packet, even a little delay per packet would cumulatively
cause a large end-to-end delay. Using symmetric-key can simplify lots of com-
putation like modulo or power, which both need a large amount of computation
ability.

A major design challenge raised by symmetric-key encryption is the number
of key pairs. Unlike asymmetric-key encryption using public key, to identify each
other, every two routers have to share a pair of secret key. A number n of routers
require a number O(n?) of keys. In multi-path validation, there might be more
routers and now calculating and deriving keys would be much more complex.
Our solution is to pre-compute as much proof related information as possible.
Before packets start to transmit, routers have already identified each other and
there is no need to derive the keys twice. Routers can thus store them locally
rather than put them in the header.

Segmentation. As aforementioned, if we directly use a single-path validation
algorithm in multi-path situation, we would face a challenge that the source
does not know the entire path to the destination before hand. Since there exists
lots of possibility, calculating all of them is impossible. Thus, we use a method
of segmentation. Specifically, we segment the forwarding path into segments of

6 A. He et al.

three routers following a sliding window with size one. Consider, for example,
an n-hop forwarding path (r1,79,...,7,). The segments ProvMPV handles are
(r1,7m9,13), (r2,73,74), (13,74,75), and so on. The key idea is that we can require
r1 to leave a proof to its next hop’s next hop, that is, r3. If r3 can successfully
verify the expected proof from 71, it demonstrates that the intermediary ro
forwards packets correctly without any misbehavior. In multi-path routing, this
greatly optimizes the computation and packet size. A packet no longer needs
to carry all proofs of routers along all paths. Instead, it iteratively updates its
carried proofs that correspond to only three hops.

How to choose the length of each segment is the key. It is obvious that the
more routers a segment contains, the higher security level we get. The space
complexity and difficulty of calculation, however, grow with the length. So what
we should consider is its lower bound. Suppose that each segment only has two
routers, then a collusion attack is easy to launch as adjacent malicious routers
can fake the verification and transfer it to the next. If there are three nodes in
a segment, even if a collusion attack occurs, the next segment would easily spot
the attack and discard the packet. Our scheme would therefore use three as a
balance of efficiency and security.

3.2 Encryption Construction

We now present our encryption scheme. Using AES-256, routers encrypt and
decrypt the proofs to accomplish the verification with high security-level guar-
anteed. Using specific strategy, which we would introduce in Section 4.4, routers
can determine its next hop, but it cannot control the second hop. Our solution
is simple but effective: we use aggregate MAC to all the possibilities together so
that the next hop can compute its next hop’s signature and search it in the set
to verify whether it can match.

We propose a new symmetric-key encryption scheme. It has three parts. The
first part is used to record the sequence of identifier. The second part stores
the information of the previous node, the current node and the next node. The
third part stores the information of the node before last, the last node and the
current node. Once decrypting the first part, router can use the sequence to
verify the path order. And the portion of it would be used to decrypt the third
part to accomplish path validation. If verification is passed, the second part
would be updated to contain the downstream node’s information. In this way,
we guarantee the upstream nodes’ verification and make sure the next hop is in
the right path.

4 Design

In this section, we detail the design of ProMPV.

Divide and Conquer: Efficient Multi-Path Validation with ProMPV 7

DataHash SessionID Timestamp

Fig. 1. ProMPV header architecture. DataHash, SessionID and Timestamp are tradi-
tional fields while ProMPV proof is designed uniquely. All the four parts are initialized
by the source and only the fourth part need to be updated by the downstream routers.

4.1 Header Architecture

As shown in Fig 1, ProMPYV introduces its proof fields between the IP header and
the TCP header. It contains four parts: DataHash, SessionID, Timestamp and
ProMPYV proof. The first three parts are regular parts of a verification scheme
and the last one is unique as it is the core of our scheme. All these four fields are
initialized by the source. The following routers only need to update the ProMPV
proof.

DataHash. DataHash is the hash value of a given package’s payload, written
as H(P). It is used to guarantee the integrity of packet. Hash function is shared
with all the nodes. If attackers do not get the right function, they cannot forge
a fake H(P) which can pass the verification. However, if attacker is a malicious
router in the path, then it can compute a valid H(P) with changed payload, so
simply put H(P) in the packet header is not enough, DataHash must take part
in the verification computation. When path validation begins to work, nodes
calculate H(P) independently and compare the result with DataHash stored in
the header. If the result fits, packet’s integrity is confirmed, otherwise, the packet
is altered and router refuse and drop the packet.

SessionID. For every session, the source and the destination choose a SessionID
to identify. It contains the hash value of nodes’ ID and session initialization
time. Routers generate symmetric keys according to it. And SessionID should be
put into the computation. Otherwise we may suffer from path deviation attack.
Suppose there are two node sequences: (11,72, 73) and (r1, 72, 74). 2 is a malicious
router and it transfer packet to r4 rather than r3. If we do not contain SessionID
in the computation, r4 can forge the proof and deceive others. With calculating
SessionlD, we guarantee only specific routers can take part in the process.
Timestamp. Timestamp records the time when the packet is created. As a part
of computation, it is used to defend against replay attack. Without it, malicious

8 A. He et al.

Table 1. Symbols and notations used in the section

P the packet’s payload

to the session initialization time

DataHash the hash value of payload

SessionID the hash value of nodes’ ID and session initialization time
Timestamp the time when packet is created

R; the ith router

1D; the ith router’s ID

K; j(= Kj,;) the symmetric key shared between router R; and R;
Queue used to store the id of three routers

Enck, encrypt the content d using symmetric key K ;
Deck; ; decrypt the content d using symmetric key K; ;
H(d) compute the hash value of content d using SHA-256

router can copy an out-of-style message and send it to other routers to bypass
the validation.

ProMPYV proof. As shown in Figure 1, ProMPYV proof consists of three parts:
proof «, proof 5 and proof v. We compute them according to the method pro-
posed in Section 3.2. The computation needs the information of packet itself
like DataHash, SessionlD and router itself like router’s ID and symmetric keys.
Algorithm 1 describes the main working process of our scheme. And details are
put in Section 4.2 and Section 4.3. Table 1 recaps the preceding fields and defines
symbols to be used in later design details.

4.2 Proof Construction

Initialization. In this phase, routers generate and exchange symmetric keys
with each other. Nodes store corresponding keys in a local table. And every
router records its adjacent routers to form a routing table. In this way, they can
confirm who is their next hop. Meanwhile, source generates DataHash, SessionID
and Timestamp and enclose it into the header.

Construction on the source. When a packet is created, the ProMPV proof
field is empty, and source need to fill all three parts: proof «, proof 5 and proof

.

Proof a: Tt is designed to store the information of a group of three continuous
nodes: the one before last R; o, the previous one R; 1 and the current one R;.
Routers encrypt their ID using shared symmetric key between current router
and its next router. Since source doesn’t have a previous router, this field only
contains the source itself.

Proof 5: It is a set of all the possible path’s information. The interval of it
is the previous node R;_;, current node R; and next node R;;;. When the
previous node decide the current node according to the specific strategy, then
it would traverse all possible next nodes, calculate their signature according to

Divide and Conquer: Efficient Multi-Path Validation with ProMPV 9

Algorithm 1 and store them together. Since source do not have a previous node,
the key used for encryption is shared between source and its next node.

Proof ~: Tts content is similar with proof 5, the only difference is that the interval
of it is the node before last R;_ o, the last node R;_; and the current node R;.
What’s more, it is not computed but inherits Proof 8 before it updates. Thus,
when source creates a packet, the content of proof 7 is empty.

Algorithm 1: ProMPV Path Validation
1 Function Source Initialization

2 DataHash + H(P)

3 SessionID < H(t,||ID)

4 | Timestamp < current time

(%))

Function Update for General R; in Path

6 HASH _Values < empty if ID; == I Dpestination then
7 L End function
Queue.dequeue()
Queue.enqueue(ID;)
10 Proof o < Encg, ,,, (Queue)
11 Proof v + proof
12 if IDz == IDSecond—to—LastRouter then
13 Forward the packet to Destination
14 L End function
15 for each next Router j=i+2 from R; to Rpestination dO

16 HASH_Value =H (DataHash||SessionI D||Timestamp||1D;)
17 Proof 8 += cipher_Set(Enck, ,(HASH_ Values))

18 Forward the packet to next Router
19 | Accept the packet and update Proofs

20 Function Verification for General R; in Path
21 if ID; == IDg,urce then
22 L End function

23 Queue < Decg,_, ,(Proof a) if Queue[R;_1]# ID;_, then

24 L Drop the packet

25 if IDz 7& IDSecondRouter then

26 Accept the packet and update Proofs
27 End function

28 if HASH Values # Decg,_, , (Proof) then
29 L Drop the packet

30 if H(DataHash||SessionID||Timestamp||ID;) NOT in
HASH_Values then
31 L Drop the packet.

32 | Accept the packet and update Proofs

10 A. He et al.

Delete() Insert (Router i+1)
«— Router i-2 «— Router i-1 <«—— Updating Routeri ——

Fig. 2. Update process of proof o

Updating new K nodes’ ID Data!Hash
———— > Knodes’ ID SessionID —

Timestamp

Shared Key —— AES Algorithm — Packet

Proof B —

Fig. 3. Update process of proof

Construction on intermediate routers. Intermediate routers only need to
update ProMPV proof field. The other three field as DataHash, SessionID and
Timestamp are remained, they are used to verify packet’s confidentiality, in-
tegrity, authentication and non-repudiation.

Proof a: We use a queue to maintain the update of routers’ id as Figure 2 shows.
The characteristic of queue is "first in first out”, just like the traveling order.
Current node push its next router into the queue and pop the node before last.
Then current router encrypts the message with key shared with the next router.
In this way, the update is guaranteed.

Proof 5: The current router first clears the field. Then it travels the routing
table and gets the possible nodes after next. Suppose its number is k, hash
function would be used to compute k groups of hash values, after that they
would be encrypted with corresponding keys each by each. Figure 3 shows the
entire process.

Proof v: When the current router R; determines its next router R; 1, proof
inherits proof 8 before it updates.

Divide and Conquer: Efficient Multi-Path Validation with ProMPV 11

DataHash DataHash
K nodes’ 1D SessionID » SessionID
Timestamp Timestamp
Shared Key — AES Algorithm —» Packet — Shared Key — AES Algorithm
Proof y — — Proof y — verifying ~<+— Proof y’
Last 2 hop entity (Router) Verifying entity (Router)

Fig. 4. Verification process of proof ~

4.3 Proof Verification

As aforementioned, DataHash, SessionID and Timestamp are used to defend
attack, not directly take part in the validation. So the main task is to verify the
ProMPV proof field. If all things can match, then router accepts the packet and
transfers it to the next hop, otherwise, it drops the packet.

Proof a: As all the symmetric keys are stored in the local area, router R; can
decrypt the message using the key K;_; ;. The decrypted message is a sequence
of three nodes: R;_o, R;_1 and R;. Routers can judge whether the packet passes
through the right path by this way. And the router id R;_o would take part in
the verification of proof ~.

Proof 5: Because proof g is a kind of message authentication code provided to
the next hop from the previous hop, it doesn’t need to be checked when the
current hop is being verified.

Proof v: As Figure 4 shows, after verifying the proof «, router R; has already
known the router before last R;_o, so that it can find the corresponding sym-
metric key K;_s; from local search. Router would link DataHash, SessionlD,
Timestamp and router id, calculate its hash value using the shared hash func-
tion and encrypt it to get a signal. Since proof 7 is set of such signals, the only
thing router needs to do is search from it to see whether there exists a signal fits
each other. If there exists one, the verification is done, or it fails.

4.4 Routing Strategy

From preamble, we can find that the another core design skill of our scheme is
the choose of routing strategy, since proof a and proof v both depend on select-
ing a next hop first. Besides, a good strategy can greatly improve the efficiency.

12 A. He et al.

According to our ProMPYV algorithm, the routing strategy we need to use should
be a dynamic, distributed router selection algorithm. Multi-path routing can be
controlled by a specific algorithm to ensure that multi-path routing is gener-
ated without closed loop [8], and the next hop path node is selected through
various parameters, such as multi-path acyclic algorithm. Each network node
distinguishes other network nodes into a forward set and a backward set. The
element in the forward set indicates that the element is one of the potential rout-
ing nodes. If one node B is a forward sets element of the other node A, the node
A is also a backward sets element of the node B. As long as the correctness of
the forward set and backward set elements is maintained, it is ensured that each
time the data packet is forwarded to the elements in the forward set, the rout-
ing path is guaranteed to be loop-free. In addition, through specific parameters
such as delay, bandwidth utilization, throughput, etc., or a certain policy given
by the Internet service provider, such as bypassing certain regions or countries,
forcing routing through specific nodes, etc., it can select specific output node in
the forward set to meet the advantages of reliability and throughput.

5 Security

It is proved here that when both the source and the receiver are trusted, this
multi-path route has the attributes of source authenticity and path verification.
This attribute applies to any network configuration, including the configurations
where networks contain malicious entity nodes.

Packet Alteration. When the malicious node R; changes the content of data
packet, such as modifying the data packet payload and DataHash, the malicious
node does not know the shared key between the previous node R;_; and the
next node R;y1. So the forgery of Proof § is not achievable and attacker can
only forge Proof v. When the packet is forwarded to the next entity node R;,1,
R;+1 uses the forged DataHash to verify the Proof § which cannot be forged.
Then it can detect the packet exception, thus resisting Packet Alteration attack.
Packet Injection. Data injection attacks for general positions are easily to be
detected due to the presence of hash operation and shared key encryption. So it is
difficult to forge or attack. A valid packet injection operation can be replaying a
previously packet header and injecting it into the current data packet. However,
this replay attack can be protected by determining if the current Timestamp is
correct [4].

Packet Deviation. In multi-path segmentation routing, the path deviation
attack is actually equivalent to attacking the segment route. Since the next
hop(R;+1) is determined, the current router(R;) will calculate a set of routers
for the one after the next hop(R;12) based on the information of the next hop
router(R;11). After a path offset attack, the next router that arrives at the
packet will tell if the updated next hop router is in the pre-computed router set.
Therefore, under the condition that each segment route is correct, the validation
of validator Proof «, Proof 3 of each packet can effectively resist path offset
attacks.

Divide and Conquer: Efficient Multi-Path Validation with ProMPV 13

DoS attack. In this segmented multi-path routing, each node only needs to
keep a fixed number of keys, and it has strong defense against memory attacks.
However, the defense capability in computing is weak. Due to the use of a large
quantity of encryption and decryption operations, DoS attacks can exhaust the
computation power of the victim node by sending a large number of packets.
Collusion. In this segmented multi-path routing, the source authentication and
path verification depend on whether the router works as it is, that is, the data
packet is normally forwarded according to the protocol. When there are no two
consecutive malicious routers in the path, the segmented multi-path route can
detect attack and thus resists collusion attacks. However, when there are two
consecutive malicious routers on the path, they can forge at the same time, so
that the data such as DataHash, SessionlD, Timestamp, Proof 3, and Proof ~
are malicious but consistent. At this time, the downstream routers cannot know
that the data packet has been modified, then continue to forward the packets.
This situation can be improved by increasing the length of the segment path,
but at the meantime it increases the time and space overhead.

6 Implementation

We use OpenSSL [1], which can be concluded by three main functions: SSL proto-
col library, application, and cryptographic algorithm library. In this experiment,
we call correlated function in the cryptographic algorithm library, including the
symmetric encryption algorithm AES with 128-bits, 192-bits, 256-bits key and
the information digest hash algorithm SHA.

The key sequence and network topology are randomly generated at initial-
ization phase and the relevant hash values are initialized using EVP _Digest with
EVP _sha256 being the parameter. Operations for each node (including the source
and destination) are divided into two functions: Verification and Update. In the
Verification, the decryption function EVP_Decryptlnit_ex, EVP_DecryptUpdate,
EVP _DecryptFinal_ex in the OpenSSL library are used to decrypt the AES keys
of different digits. Similarly, in the Update, the symmetric encryption function
EVP_Encryptlnit_ex, EVP_EncryptUpdate and EVP_EncryptFinal_ex are able
to handle AES encryption operations under different security level.

7 Evaluation

In this section, we compare ProMPV with ICING. Due to the calculation re-
quirement, the experiment run on a 4 core cloud server with Intel Xeon Skylake
6146(3.2 Hz) and 8GB memory provided by Tencent. In order to obtain reliable
data, all reported statics are average over 10000 runs.

The two main parameters that influence the experiment are total length of
the path and security level. According to Figure 5 and Figure 6, the choice of
path length does not have much effect on time overhead, because ProMPV cares
mainly about segment length. On the other hand, the higher the security level of
the encryption algorithm is, the more the method costs. Therefore, ProMPYV is

14 A. He et al.

Length 4 Update Length 8 Update

0.450
0.449 —@— ASE-128-ECB 0.447
—A— ASE-192-ECB

0.448 ASE-256-ECB 0.446
0447 __0.445
g 0.446 E 0484 & rmeeT A & ———
;0'445 30'443 —&— ASE-192-ECB
g 0.444 e 0.442 ASE-256-ECB
£ 0.443 £ 0.441

0.442 0.440

0.441 0.439

0.440 oass| ©* o 0, — ",

043977 2 3 043777 2 3 a 5 6 7

Node ID Node ID

0.454 Length 12 Update

0.453

0.452

0.451
£0.450
5 0.449 —@— ASE-128-ECB
e —A— ASE-192-ECB
£ 0-448 ASE-256-ECB
o447

0.446

0.445

0.444

1 2 3 4 5 7 8 9 10 11

6
Node ID

Fig. 5. Proof update time with different security level and path length.

flexible for users to determine segment length and security level basing on their
own needs. To balance safeness and cost, users can use higher security level or
enhance segment length to improve security, or use lower security level or reduce
segment length to cut down cost.

As is shown, the time required for the update is much greater than the
verification, since the verification only needs to verify Proof a, Proof v, and
the update requires Proof «, Proof § and Proof . In addition, Figure 5 has
only n — 1 nodes, because the last node’s updating time, which only needs to
update the Proof a and Proof «y, is much smaller than others and doesn’t have
a representative meaning.

7.1 Time Overhead

As expected, the time overhead is not related to total length of the path. Also,
time cost and node ID are not positively correlated. The controllable factor
that influence time overhead is the security level of encryption algorithm, higher
security level means more calculation in the process which costs more time.

In the segmented multi-path environment, the update of proof is only related
to the number of connected nodes of each node so lines are smooth, while ICINGs
processing time is proportional to the path length. Since ICING uses cache, the
processing time improves dramatically, for creating is 2.6z 4+ 40.1us, and for
verifying is 2.6x + 24.4us, where x is the path length. Given a 12 nodes path,
the creation time and verification time are 71.3us and 55.6us respectively. Our
solution uses the AES algorithm with 256-bit key. It is tested in fully-connected
case that each node is connected to 15 other nodes. The time of creating and
verifying are about 4.3 x 107%s and 5.12 x 1073s. And ProMPYV can also use
cache to accelerate speed and improve performance.

Divide and Conquer: Efficient Multi-Path Validation with ProMPV 15

Length 4 Verification Length 8 Verification

0.000195 0.000195
—@— ASE-128-ECB —@— ASE-128-ECB
0.000190 —&— ASE-192-ECB 0.000190 —4&— ASE-192-ECB
ASE-256-ECB ASE-256-ECB
3 0.000185 % 0.000185
£ £
0.000180 0.000180 -
g o N g ‘/A//t/ /‘\k"’/‘\
i=0.000175{ 4 — | F0.000175 -
S
./.\0/. \.—‘\'—.
0.000170 0.000170
0.000165"5 3 3 T 0.000165— 5 3 T 5 3 5 3
Node ID Node ID
0.000200 Length 12 Verification
—@— ASE-128-ECB
0.000195 —A— ASE-192-ECB
ASE-256-ECB
% 0.000190
£
© 0.000185
—
£ ‘/‘\i—/k \‘\’\k/i\h\ \n/"/A
i= 0.000180 . — /0
—
0.000175 N \V/A\‘\+/”/

0.000170

6 7 8 9 10 11 12
Node ID

Fig. 6. Proof verify time with different security level and path length.

Table 2. Proof § (or) size in 80-bit security level.

node number 1121314516 |7 |8 1(9 (10
proof S(or) size (byte)|10(20|30|40(50|60|70(80{90|100

7.2 Space Overhead

As shown in Table 2, the size of proof S (or 7) is positively correlated to the
number of connected nodes of each segment’s next node, because ProMPV re-
quires information out of the segment to verify the path. Therefore, total length
of the path is hardly a factor of space overhead. Also, the security level decides
space that each node takes.

Under same security level, the ProMPV header space increases slowly by a
much smaller constant compared with ICING as the path grows. For instance,
under an 80-bit security level, 10 bytes would add to the proof size of ProMPV
for each node while the proof size of ICING increases by 42 bytes [5]. Therefore,
our scheme saves header space and makes multi-path validation more feasible.

8 Conclusion

We design and achieve a new multi-path routing scheme, satisfying path val-
idation and source authentication. By cutting entire path to small segments,
we overcome the weakness of single-path routing. If we can guarantee every
segment’s safety, the reliability of path validation scheme can be guaranteed.
Besides, the working time doesn’t relate to path length as segment method is
used but relates to the number of nodes its next node connects with. With spe-
cific routing strategy, we can limit the proof size and accelerate speed. And by

16

A. He et al.

changing the security level or the segment length, we can sacrifice security to
get speed or sacrifice speed to get security. Both theory and experiment tell our
scheme’s superiority. For future work, we plan to achieve hardware acceleration
on it to improve the computation speed without using more computation power.

Acknowledgement

This work is supported by The Natural Science Foundation of Zhejiang Province
under Grant No. LY19F020050. We would also like to thank Professor Kai Bu
for mentoring us on the project.

References

11.

12.

(OpenSSL: Cryptography and SSL/TLS Toolkit), https://www.openssl.org/

Bu, K., Yang, Y., Laird, A., Luo, J., Li, Y., Ren, K.: What’s (not) validating
network paths: A survey. arXiv:1804.03385 (2018)

He, J., Rexford, J.: Toward internet-wide multipath routing. IEEE Network 22(2)
(2008)

Lee, T., Pappas, C., Perrig, A., Gligor, V., Hu, Y.C.: The case for in-network replay
suppression. In: ACM AsiaCCS. pp. 862-873 (2017)

Naous, J., Walfish, M., Nicolosi, A., Maziéres, D., Miller, M., Seehra, A.: Verifying
and enforcing network paths with icing. In: CONEXT (2011)

Paxson, V.: End-to-end routing behavior in the internet. In: ACM SIGCOMM. pp.
25-38 (1996)

Segall, A.: Optimal distributed routing for virtual line-switched data networks.
IEEE Transactions on Communications 27, 201 — 209 (02 1979)

Singh, R., Singh, Y., Yadav, A.: Loop free multipath routing algorithm (01 2016)
Villamizar, C.: Ospf optimized multipath (ospf-omp) (09 2019)

. Wu, B., Xu, K., Li, Q., Liu, Z., Hu, Y.C., Reed, M.J., Shenk, M., Yang, F.: Enabling

efficient source and path verification via probabilistic packet marking. In: IWQoS
(2018)

Xu, W., Rexford, J.: Miro: multi-path interdomain routing. In: ACM SIGCOMM
(2006)

Yang, X., Wetherall, D.: Source selectable path diversity via routing deflections.
In: ACM SIGCOMM. vol. 36, pp. 159-170 (2006)

